5G通信系统的创新 -- 毫米波及其运用和测试

2020-11-02 16:06:17 深圳市瑞普高电子有限公司 81

5G通信系统从最开始就提出了更快、更高、更强的口号,从1G到5G甚至到未来的通信系统,设计师们正是秉承着这个理想,来设计并升级一代一代的通信系统。

5G更强大的数据通信能力以及更丰富的连接场景的设计目标,如家庭影院、4K甚至8K的高清电影、VR、远程医疗、车联网等新兴应用被各种脑洞畅想来填补。要满足这些设计目标,没点创新怎么能行?于是,Massive MIMO、毫米波等新技术名词一度成为热搜名词。但也有人说,当3GPP决定5G NR继续使用OFDM技术的那一刻,相比4G而言,5G其实没有颠覆性的技术,而毫米波差不多成了5G最大的“新意”。

根据3GPP 38.101协议的规定,5G NR主要使用两个频段:FR1 和FR2:FR1(450MHz-6GHz),即通常所说的Sub 6GHz;FR2(24.25GHz-52.6GHz),即通常所说的5G毫米波频段。FR1上即将发生的演变被很多人认为是对当前4G系统的演进,而对毫米波的拓展才是当前5G通信系统最大的新点和难点,因为就算是Massive MIMO这项技术,其实也更多地是为了补充毫米波频段本身的缺陷。

在美国,当前主要的运营商还以发展毫米波5G为主,用于补充偏远地区的用户接入。在中国,虽然优先部署和发展Sub 6GHz 的5G系统,但到2019年这个即将商用的时间点,运营商们也开始逐步将眼光投射到毫米波频段,用以实现5G通信系统的强大指标。

这不,就在不久前,工信部已经给中国移动香港发了频段为26GHz-28GHz之间的毫米波牌照。除此之外,香港电讯和数码通也同样分别获得了该频段内的400MHz的带宽。

 1) 什么是毫米波?

毫米波(millimeter Wave):波长在1-10mm的电磁波称为毫米波,处于微波与远红外波相交叠的波长范围,因而兼具两种波普的特点。毫米波的理论和技术分别是微波向高频的延伸和光波向低频的扩展。

 2) 为什么要扩展到毫米波?

简单来说,应用驱动需求。很多年以前,无线通信应用不像现在这般拥挤繁荣。30GHz以内的频谱足够应付各种应用,而我们所熟悉的移动通信系统更是基本集中在6GHz以下的优质频谱上。不过经过多年的发展,6GHz以内的优质频谱资源已经基本挤不下任何东西了,无论如何折腾(淘汰过往的应用、采用认知无线电技术来复用频谱等),移动通信系统的频谱资源短缺和冲突依然是最为严峻的问题。现在要开发新的5G系统,仅仅靠部分运营商腾出一些2G时代的少量频谱资源怎么够。直到有一天,有人突然发现,那不是还有一大片毫米波频段么!毫米波频段就像一块未开发的处女地,一片新大陆,为移动用户和运营商提供了大量的可用频谱资源。

 3) 毫米波的优点?

优点1

极大的带宽。通常认为毫米波频率范围是26.5GHz-300GHz,带宽高达273.5GHz,超过从直流到微波全部带宽的10倍。即使考虑大气吸收因素,毫米波段有很大一部分带宽并不适合“居住”,使得毫米波段只有四个主要的可用窗口,但这四个窗口的总带宽也可达135GHz。

优点2

波束窄。在相同天线尺寸下,毫米波的波束要比微波的波束窄的多。例如一个12cm的天线,在9.4GHz时波束宽度为18度,而在94GHz波束宽度仅为1.8度,因此毫米波往往被用于分辨更近的小目标或者更为清晰的观察目标的细节。

优点3

与激光相比,传播受气候影响小很多,因此可以认为具有全天候特性。

优点4

与微波相比,毫米波元器件的尺寸要小很多。因此更容易小型号。

 4) 这么一大片新大陆,怎么现在才想起来搬过去?

虽说毫米波频段有以上的各种优点,但要将其应用于移动通信系统,也有诸多难点:

难点1

毫米波的传输距离实在有限,要用在大规模覆盖上难度不小,高密度部署的话成本也颇高,这也是目前很多运营商比较头疼的问题。老师教导我们,无线电波的频率越高,传播距离越短。在理想的自由空间传播条件下,一个70GHz的毫米波传播10米之后损耗高达89dB;而在非理想的传播条件下,传播损耗更是大的多。因此,毫米波系统必须通过提高发射功率、提高天线增益、提高接受灵敏度等各种方法来补偿这么大的传播损耗。现在5G通信系统里引入了Massive MIMO大规模天线阵列技术等,也是为向毫米波频段搬家修好道路。

难点2

成本高。过去毫米波器件/芯片一直用于军事领域而无法大规模商用。但最近几年,通过使用SiGe、GaAs、GaN、InP等材料并结合新的生产工艺,工作于毫米波段的芯片上已经集成了小至几十甚至几纳米的晶体管,大大降低了成本。为毫米波的商业化应用提供了可能。

 5) 开发新大陆,你的器件/芯片都准备好了么?

虽然从技术理论层面上看,Massive MIMO的引入、大功率器件的规模生产能在一定程度上解决毫米波传播距离受限的约束,不过要想达到预定的指标,整个毫米波链路上的所有器件和芯片都必须完美配合。每个器件/芯片各司其职,才能使整个系统最终达到预定指标。

此外,在成本指标越来越严的要求下,您设计和生产的毫米波器件和芯片的性能还有多少裕量也是一个值得考量的问题。今天小编就专门就针对5G毫米波频段的器件/芯片测试,再为您梳理一遍~

5G通信链路上典型的毫米波芯片/器件等如下:放大器,滤波器,混频器,传输线,天线等。针对这一系列毫米波器件/组件,我们可以总结出一系列通用的测试需求,如下:

 

image.png

 

针对以上测试需求,Keysight 强大的网络分析仪单机频率覆盖到67GHz,提供诸如S参数、增益压缩、交调测试、脉冲激励测试等一系列测试能力毫无压力,是一台真正意义上的毫米波器件/组件综合测试系统。结合外部扩频头,还可提供1100GHz频段的测试扩展能力。

 

通用指标测试

5G毫米波组件/器件的On Wafer测试+全参数测试

1)DUT尺寸小,需配合探针台与仪表仪器进行DUT测量

2)DUT测试端口连接次数有限,最好能进行一次连接多参数测试

3)校准较为困难,耗时影响效率,仪表的稳定度一定要好,且能多通道同时校准!

4)DUT没有封装,要考虑散热和屏蔽的问题,因此要使用脉冲式的测试方法

以上所有On Wafer测试需求,Keysight的PNA网络分析仪,一台仪表,全部满足!而针对非wafer级的全参数测试,我们的PNA更是妥妥满足您的测试需求~下图是我们在On Wafer测试中进行噪声系数校准的连接图和校准步骤~

 

image.png

 

如下是我们PNA-X N5290/91A的典型配置

 

image.png

 

当然,对于放大器等芯片/器件,除了通用测试指标之外,往往需要测试系统级的放大性能。以后我们还会介绍如毫米波放大器芯片的系统级测试方案,敬请留意关注。



瑞普高电子

瑞普高的服务宗旨

用真心对待客户,用技术赢得客户,

用诚信创建企业。

瑞普高的目标

以不断创新的服务理念,力争打造中国仪器行业的“一站式”服务的领先品牌。

瑞普高的团队精神

为美好的生活,负责的企业,进步的行业而同舟共济。

浏览详细

主推产品

联系我们